资源类型

期刊论文 560

会议视频 55

会议信息 1

年份

2024 2

2023 58

2022 43

2021 70

2020 74

2019 46

2018 50

2017 57

2016 27

2015 33

2014 12

2013 6

2012 8

2011 11

2010 11

2009 5

2008 9

2007 9

2006 13

2005 8

展开 ︾

关键词

智能制造 62

可持续发展 61

增材制造 29

制造业 15

新一代智能制造 10

制造强国 8

水资源 8

3D打印 7

食物安全 6

人工智能 5

发展战略 5

绿色制造 5

4D打印 4

中国制造 4

医学 4

指标体系 4

质量 4

高分子材料 4

交通 3

展开 ︾

检索范围:

排序: 展示方式:

Equipment–process–strategy integration for sustainable machining: a review

《机械工程前沿(英文)》 2023年 第18卷 第3期 doi: 10.1007/s11465-023-0752-4

摘要: Although the manufacturing industry has improved the quality of processing, optimization and upgrading must be performed to meet the requirements of global sustainable development. Sustainable production is considered to be a favorable strategy for achieving machining upgrades characterized by high quality, high efficiency, energy savings, and emission reduction. Sustainable production has aroused widespread interest, but only a few scholars have studied the sustainability of machining from multiple dimensions. The sustainability of machining must be investigated multidimensionally and accurately. Thus, this study explores the sustainability of machining from the aspects of equipment, process, and strategy. In particular, the equipment, process, and strategy of sustainable machining are systematically analyzed and integrated into a research framework. Then, this study analyzes sustainable machining-oriented machining equipment from the aspects of machine tools, cutting tools, and materials such as cutting fluid. Machining processes are explored as important links of sustainable machining from the aspects of dry cutting, microlubrication, microcutting, low-temperature cutting, and multidirectional cutting. The strategies for sustainable machining are also analyzed from the aspects of energy-saving control, machining simulation, and process optimization of machine tools. Finally, opportunities and challenges, including policies and regulations toward sustainable machining, are discussed. This study is expected to offer prospects for sustainable machining development and strategies for implementing sustainable machining.

关键词: sustainable machining     equipment     process     strategy     manufacturing    

钢铁企业实现可持续发展的途径

谢企华

《中国工程科学》 2005年 第7卷 第5期   页码 9-15

摘要:

可持续发展战略是中国钢铁企业的必然选择。实施这一战略可以从环保、节能、资源的综合利用起步,以技术进步、环保投资为支撑,推进循环经济,从而为实现企业与社会长期和谐、协调一致的发展承担起应有的责任。

关键词: 宝钢     可持续发展     环境友好     节能降耗     资源的有效利用     绿色制造    

Toward the development of process plans with reduced environmental impacts

Fu ZHAO, Vance R. MURRAY, Karthik RAMANI, John W. SUTHERLAND

《机械工程前沿(英文)》 2012年 第7卷 第3期   页码 231-246 doi: 10.1007/s11465-012-0334-3

摘要:

Manufacturing process planning serves as a pivotal link between design and manufacturing. Process planning decisions play a critical role in determining the cost and environmental impacts associated with manufacturing. Past efforts to address environmental issues during process planning are briefly reviewed and potential approaches that can achieve reduced environmental impacts are then discussed. A proposed method is presented for environmentally conscious process planning. The method begins with an existing process plan, and then identifies impactful process steps, and associated design features, in terms of manufacturing cost and environmental impact. Alternative processes that can achieve these features are then considered to generate alternative process plans. These alternatives are then evaluated in terms of economic and environmental performance. The results of these evaluations are then used to generate a set of process plans that are non-dominated with respect to manufacturing cost and environmental impact objectives to produce a Pareto frontier. The proposed method is demonstrated using the manufacturing of a prosthetic hip shell as a case study.

关键词: process planning     life cycle assessment (LCA)     sustainable manufacturing     prosthetic hip shell    

Atomic and close-to-atomic scale manufacturing—A trend in manufacturing development

Fengzhou FANG

《机械工程前沿(英文)》 2016年 第11卷 第4期   页码 325-327 doi: 10.1007/s11465-016-0402-1

摘要:

Manufacturing is the foundation of a nation’s economy. It is the primary industry to promote economic and social development. To accelerate and upgrade China’s manufacturing sector from “precision manufacturing” to “high-performance and high-quality manufacturing”, a new breakthrough should be found in terms of achieving a “leap-frog development”. Unlike conventional manufacturing, the fundamental theory of “Manufacturing 3.0” is beyond the scope of conventional theory; rather, it is based on new principles and theories at the atomic and/or close-to-atomic scale. Obtaining a dominant role at the international level is a strategic move for China’s progress.

关键词: atomic manufacturing     Manufacturing 3.0     Manufacturing 2025     Industry 4.0    

Concept and requirements of sustainable development in bridge engineering

Yaojun GE, Haifan XIANG

《结构与土木工程前沿(英文)》 2011年 第5卷 第4期   页码 432-450 doi: 10.1007/s11709-011-0126-6

摘要: The concept of sustainability is described in this paper using a single sustainable principle, two goals of sustainable development, three dimensions of sustainable engineering, four sustainable requirements and five phases of sustainable construction. Four sustainable requirements and their practice in China are discussed in particular. The safe reliability of bridges is first compared with the events of bridge failure in China and in the rest of the world and followed by structural durability, including the cracking of concrete cable-stayed bridges, deflection of concrete girder bridges and fatigue cracks of orthotropic steel decks. With respect to functional adaptability, lateral wind action on vehicles and its improvement are introduced regarding a sea-crossing bridge located in a typhoon-prone area. The Chinese practice of using two double main span suspension bridges and a twin parallel deck cable-stayed bridge is presented in discussing the final sustainable requirement: capacity extensibility.

关键词: sustainable engineering     safe reliability     structural durability     functional adaptability     capacity extensibility    

CROP DIVERSITY AND SUSTAINABLE AGRICULTURE: MECHANISMS, DESIGNS AND APPLICATIONS

《农业科学与工程前沿(英文)》 2021年 第8卷 第3期   页码 359-361 doi: 10.15302/J-FASE -2021417

摘要:

Intensive monoculture agriculture has contributed greatly to global food supply over many decades, but the excessive use of agricultural chemicals (fertilizers, herbicides and pesticides) and intensive cultivation systems has resulted in negative side effects, such as soil erosion, soil degradation, and non-point source pollution[1]. To many observers, agriculture looms as a major global threat to nature conservation and biodiversity. As noted in the Global Biodiversity Outlook 4[2], the drivers associated with food systems and agriculture account for around 70% and 50% of the projected losses by 2050 of terrestrial and freshwater biodiversity, respectively[3].

In addition, agricultural development and modernization of agriculture has led to a decline in the total number of plant species upon which humans depend for food[4]. Currently, fewer than 200 of some 6000 plant species grown for food contribute substantially to global food output, and only nine species account for 67% of total crop production[3]. The global crop diversity has declined in past decades.

Crop species diversity at a national scale was identified as one of the most important factors that stabilize grain production at a national level[5]. A group of long-term field experiments demonstrated that crop diversity also stabilizes temporal grain productivity at field level[6]. Therefore, maintaining crop diversity at both national and field levels is of considerable importance for food security at national and global scales.

Crop diversity includes temporal (crop rotation) and spatial diversity (e.g., intercropping, agroforestry, cultivar mixtures and cover crops) at field scale. Compared to intensive monocultures, diversified cropping systems provide additional options to support multiple ecosystem functions. For instance, crop diversity may increase above- and belowground biodiversity, improve yield stability, reduce pest and disease damage, reduce uses of chemicals, increase the efficiency of the use land, light water and nutrient resources, and enhance stress resilience in agricultural systems.

To highlight advances in research and use of crop diversity, from developing and developed countries, we have prepared this special issue on “Crop Diversity and Sustainable Agriculture” for Frontiers of Agricultural Sciences and Engineering, mainly focusing on intercropping.

Intercropping, growing at least two crops at the same time as a mixture, for example, in alternate rows or strips, is one effective pathway for increasing crop diversity at the field scale. Over recent decades, there have been substantial advances in terms of understanding of processes between intercropped species and applications in practice. There are 10 articles in this special issue including letters, opinions, review and research articles with contributions from Belgium, China, Denmark, France, Germany, Greece, Italy, the Netherlands, Spain, Switzerlands, UK, and Mexico etc.

The contributors are internationally-active scientists and agronomists contributing to intercropping research and extension. For example, Antoine Messean is coordinator of the EU H2020 Research project DiverIMPACTS “Diversification through rotation, intercropping, multiple cropping, promoted with actors and value chains towards sustainability”. Eric Justes is coordinator of the EU H2020 Research project ReMIX “Redesigning European cropping systems based on species mixtures”. Maria Finckh has worked on crop cultivar mixture and organic agriculture over many years. Henrik Hauggaard-Nielsen has outstanding expertise in intercropping research and applications, moving from detailed studies on species interactions in intercropping to working with farmers and other stakeholders to make intercropping work in practical farming. In addition to these established scientists, young scientists who have taken an interest in intercropping also contribute to the special issue, including Wen-Feng Cong, Yixiang Liu, Qi Wang, Hao Yang and others.

The first contribution to this special issue addresses how to design cropping systems to reach crop diversification, with Wen-Feng Cong and coworkers ( https://doi.org/10.15302/J-FASE-2021392) considering that it is necessary to optimize existing and/or design novel cropping systems based on farming practices and ecological principles, and to strengthen targeted ecosystem services to achieve identified objectives. In addition, the design should consider regional characteristics with the concurrent objectives of safe, nutritious food production and environmental protection.

The benefits of crop diversification have been demonstrated in many studies. Wen-Feng Cong and coworkers describe the benefits of crop diversification at three scales: field, farm, and landscape. Hao Yang and coauthors reviewed the multiple functions of intercropping. Intercropping enhances crop productivity and its stability, it promotes efficient use of resources and saves mineral fertilizer, controls pests and diseases of crops and reduces the use of pesticides. It mitigates climate change by sequestering carbon in soil, reduces non-point source pollution, and increases above- and belowground biodiversity of other taxa at field scale ( https://doi.org/10.15302/J-FASE-2021398).

Eric Justes and coworkers proposed the “4C” framework to help understand the role of species interactions in intercropping ( https://doi.org/10.15302/J-FASE-2021414). The four components are competition, complementary, cooperation (facilitation) and compensation, which work often simultaneously in intercropping. Hao Yang and coworkers used the concept of diversity effect from ecology to understand the contribution of complementarity and selection effects to enhanced productivity in intercropping. The complementarity effect consists of interspecific facilitation and niche differentiation between crop species, whereas the selection effect is mainly derived from competitive processes between species such that one species dominates the other ( https://doi.org/10.15302/J-FASE-2021398). Also, Luis Garcia-Barrios and Yanus A. Dechnik-Vazquez dissected the ecological concept of the complementarity and selection effects to develop a relative multicrop resistance index to analyze the relation between higher multicrop yield and land use efficiency and the different ecological causes of overyielding under two contrasting water stress regimes ( https://doi.org/10.15302/J-FASE-2021412).

Odette Denise Weedon and Maria Renate Finckh found that composite cross populations, with different disease susceptibilities of three winter wheat cultivars, were moderately resistant to brown rust and even to the newly emerged stripe rust races prevalent in Europe since 2011, but performance varied between standard and organic management contexts ( https://doi.org/10.15302/J-FASE-2021394).

Comparing the performance of intercrops and sole crops is critical to make a sound evaluation of the benefits of intercropping and assess interactions between species choice, intercrop design, intercrop management and factors related to the production situation and pedoclimatic context. Wopke van der Werf and coworkers review some of the metrics that could be used in the quantitative synthesis of literature data on intercropping ( https://doi.org/10.15302/J-FASE-2021413).

Interspecific interactions provide some of the advantages of intercropping, and can be divided into above- and belowground interactions. Aboveground interactions can include light and space competition, which is influenced by crop species traits. Root exudates are also important in interspecific interactions between intercropped or rotated species. Qi Wang and coworkers estimated the light interception of growth stage of maize-peanut intercropping and corresponding monocultures, and found that intercropping has higher light interception than monoculture, and increasing plant density did not further increase light interception of intercropping ( https://doi.org/10.15302/J-FASE-2021403). Yuxin Yang and coworkers reported that the root exudates of fennel (Foeniculum vulgare) can reduce infection of tobacco by Phytophthora nicotianae via inhibiting the motility and germination of the spores of the pathogen ( https://doi.org/10.15302/J-FASE-2021399).

Focusing on the application of intercropping, Wen-Feng Cong and coworkers formulated species recommendations for different regions of China for different crop diversity patterns and crop species combinations. These authors also suggested three steps for implementing crop diversification on the North China Plain. Although there are multiple benefits of crop diversification, its extension and application are hindered by various technical, organizational, and institutional barriers along value chains, especially in Europe. Based on the findings of the European Crop Diversification Cluster projects, Antoine Messéan and coworkers suggested that there needs to be more coordination and cooperation between agrifood system stakeholders, and establish multiactor networks, toward an agroecological transition of European agriculture ( https://doi.org/10.15302/J-FASE-2021406). In addition, Henrik Hauggaard-Nielsen and coworkers report the outcomes of a workshop for participatory research to overcome the barriers to enhanced coordination and networking between stakeholders ( https://doi.org/10.15302/J-FASE-2021416).

Intercropping, though highly effective in labor-intensive agriculture, may be difficult to implement in machine-intensive, large-scale modern agriculture because appropriate large equipment is not commercially available for planting and harvesting various crop mixtures grown with strip intercropping[6]. Thus, the appropriate machinery will need to be developed for further practical application in large-scale agriculture.

As the guest editors, we thank all the authors and reviewers for their great contributions to this special issue on “Crop Diversity and Sustainable Agriculture”. We also thank the FASE editorial team for their kind supports.

Towards the sustainable intensification of agriculture—a systems approach to policy formulation

Leslie G. FIRBANK

《农业科学与工程前沿(英文)》 2020年 第7卷 第1期   页码 81-89 doi: 10.15302/J-FASE-2019291

摘要:

The sustainable intensification of agriculture involves providing sufficient food and other ecosystem services without going beyond the limits of the earth’s system. Here a project management approach is suggested to help guide agricultural policy to deliver these objectives. The first step is to agree measurable outcomes, integrating formal policy goals with the often much less formal and much more diverse goals of individual farmers. The second step is to assess current performance. Ideally, this will involve the use of farm-scale metrics that can feed into process models that address social and environmental domains as well as production issues that can be benchmarked and upscaled to landscape and country. Some policy goals can be delivered by supporting ad hoc interventions, while others require the redesign of the farming system. A pipeline of research, knowledge and capacity building is needed to ensure the continuous increase in farm performance. System models can help prioritise policy interventions. Formal optimization of land use is only appropriate if the policy goals are clear, and the constraints understood. In practice, the best approach may depend on the scale of action that is required, and on the amount of resource and infrastructure available to generate, implement and manage policy.

关键词: agricultural policy     ecosystem services     indicators of sustainable intensification     knowledge exchange     land use optimization    

Reconfigurable manufacturing systems: Principles, design, and future trends

Yoram KOREN, Xi GU, Weihong GUO

《机械工程前沿(英文)》 2018年 第13卷 第2期   页码 121-136 doi: 10.1007/s11465-018-0483-0

摘要:

Reconfigurable manufacturing systems (RMSs), which possess the advantages of both dedicated serial lines and flexible manufacturing systems, were introduced in the mid-1990s to address the challenges initiated by globalization. The principal goal of an RMS is to enhance the responsiveness of manufacturing systems to unforeseen changes in product demand. RMSs are cost-effective because they boost productivity, and increase the lifetime of the manufacturing system. Because of the many streams in which a product may be produced on an RMS, maintaining product precision in an RMS is a challenge. But the experience with RMS in the last 20 years indicates that product quality can be definitely maintained by inserting in-line inspection stations. In this paper, we formulate the design and operational principles for RMSs, and provide a state-of-the-art review of the design and operations methodologies of RMSs according to these principles. Finally, we propose future research directions, and deliberate on how recent intelligent manufacturing technologies may advance the design and operations of RMSs.

关键词: reconfigurable manufacturing systems     responsiveness     intelligent manufacturing    

INTERCROPPING: FEED MORE PEOPLE AND BUILD MORE SUSTAINABLE AGROECOSYSTEMS

《农业科学与工程前沿(英文)》 2021年 第8卷 第3期   页码 373-386 doi: 10.15302/J-FASE -2021398

摘要:

Intercropping is a traditional farming system that increases crop diversity to strengthen agroecosystem functions while decreasing chemical inputs and minimizing negative environmental effects of crop production. Intercropping is currently considerable interest because of its importance in sustainable agriculture. Here, we synthesize the factors that make intercropping a sustainable means of food production by integrating biodiversity of natural ecosystems and crop diversity. In addition to well-known yield increases, intercropping can also increase yield stability over the long term and increase systemic resistance to plant diseases, pests and other unfavorable factors (e.g. nutrient deficiencies). The efficient use of resources can save mineral fertilizer inputs, reduce environmental pollution risks and greenhouse gas emissions caused by agriculture, thus mitigating global climate change. Intercropping potentially increases above- and below-ground biodiversity of various taxa at field scale, consequently it enhances ecosystem services. Complementarity and selection effects allow a better understanding the mechanisms behind enhanced ecosystem functioning. The development of mechanization is essential for large-scale application of intercropping. Agroecosystem multifunctionality and soil health should be priority topics in future research on intercropping.

 

关键词: agroecosystems , crop diversity ,intercropping,interspecific interactions,sustainable agriculture    

WHEAT STRIPE RUST AND INTEGRATION OF SUSTAINABLE CONTROL STRATEGIES IN CHINA

《农业科学与工程前沿(英文)》 2022年 第9卷 第1期   页码 37-51 doi: 10.15302/J-FASE-2021405

摘要:

Stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici occurs in almost all wheat-producing regions of the world. Severe countrywide epidemics in China have caused substantial yield losses. Growing resistant cultivars is the best strategy to control this disease but the pathogen can overcome resistance in wheat cultivars. The high variation in the virulence of the pathogen combined with the large areas of susceptible wheat cultivars enables the pathogen population to increase rapidly and disperse over long distances under favorable environmental conditions, resulting in severe pandemics within cropping seasons. Current stripe rust control measures are based on many years of research including the underlying epidemiology regarding year-to-year survival of the pathogen, pathways of pathogen dispersal within seasons and years, the role of P. striiformis sexual hybridization, the use of resistance sources in breeding programs, and year-round surveillance of national wheat crops that are present in different parts of the country throughout the year. All these strategies depend on accurate prediction of epidemics, more precise use of fungicides to meet national requirements and better deployment of resistance genes. New ideas with potential application in sustainable protection of stripe rust include negative regulatory gene editing, resistance gene overexpression and biological control based on microbiomes.

 

关键词: sustainable disease control / integrated control Puccinia striiformis / Triticum aestivum    

Imprinted membranes for sustainable separation processes

Laura Donato, Enrico Drioli

《化学科学与工程前沿(英文)》 2021年 第15卷 第4期   页码 775-792 doi: 10.1007/s11705-020-1991-0

摘要: The rapid industrial growth and the necessity of recovering and recycling raw materials increased the interest in the production of highly selective and efficient separation tools. In this perspective, a relevant input was given by the membrane-based technology and the production of imprinted membranes, which possess specific recognition properties at molecular and ionic level, offers the possibility of developing sustainable and green processes. Furthermore, the integration of imprinted membranes with traditional or membrane-based approaches is a promising strategy in the logic of process intensification, which means the combination of different operations in a single apparatus. This work discusses the concept and separation mechanisms of imprinted membranes. Furthermore, it presents an overview of their application in organic solvent nanofiltration, for the removal of toxic agents and recovery solvent, as well as valuable compounds. The recent advances in water treatment, such as pesticide removal and recovery of metal ions, are also discussed. Finally, potential applications of imprinted membranes in hybrid processes are highlighted, and a look into the future of membrane separations for water treatment and recovery of critical raw materials is offered.

关键词: sustainable processes     membrane separation     molecular recognition     imprinted membranes     water treatment    

Application of blockchain in the field of intelligent manufacturing: Theoretical basis, realistic plights

Qiang ZHANG, Baoyu LIAO, Shanlin YANG

《工程管理前沿(英文)》 2020年 第7卷 第4期   页码 578-591 doi: 10.1007/s42524-020-0137-x

摘要: Blockchain technology is considered one of the promising technologies of the information technology era. The core features of blockchain, such as decentralization, transparency, high security, and tamper-proof nature, bring great convenience for large-scale social cooperation and data sharing. Blockchain has a broad application prospect in the field of intelligent manufacturing. The key issues of this field, such as distributed collaborative production, industrial big data sharing and security, transparent logistics, and supply chain, are naturally consistent with the core characteristics of the blockchain technology. This study aims to analyze the application of blockchain in the field of intelligent manufacturing. First, we introduce the basic connotation and applications of blockchain. Then, we propose the theoretical basis for the application of blockchain in the field of intelligent manufacturing. Finally, we point out the realistic plights and provide some suggestions to promote the application of blockchain in the field of intelligent manufacturing.

关键词: blockchain technology     intelligent manufacturing     networked collaborative manufacturing     full life-cycle management     manufacturing model innovation    

中国制造业发展的成就、经验与问题研究

李平,李晓华

《中国工程科学》 2015年 第17卷 第7期   页码 41-40

摘要:

改革开放30多年来,中国制造业建立起完善的和具有国际竞争力的现代制造业体系、在世界制造格局中占有举足轻重的地位。中国制造业发展成就的取得归功于坚持改革开放政策、保持稳定的社会经济环境、建设完善的公共基础设施、发挥地方政府的积极性和高度重视创新和科技进步。制约中国制造业进一步转型升级的体制、机制和政策问题仍然存在。

关键词: 中国制造     制造业     制造大国     制造强国    

Nudging sustainable consumption of residential energy use: A behavioral economics perspective

《工程管理前沿(英文)》   页码 540-545 doi: 10.1007/s42524-023-0264-2

摘要: Nudging sustainable consumption of residential energy use: A behavioral economics perspective

关键词: consumption energy use    

Special Topic on environment and sustainable development

《化学科学与工程前沿(英文)》 2017年 第11卷 第3期   页码 291-292 doi: 10.1007/s11705-017-1667-6

标题 作者 时间 类型 操作

Equipment–process–strategy integration for sustainable machining: a review

期刊论文

钢铁企业实现可持续发展的途径

谢企华

期刊论文

Toward the development of process plans with reduced environmental impacts

Fu ZHAO, Vance R. MURRAY, Karthik RAMANI, John W. SUTHERLAND

期刊论文

Atomic and close-to-atomic scale manufacturing—A trend in manufacturing development

Fengzhou FANG

期刊论文

Concept and requirements of sustainable development in bridge engineering

Yaojun GE, Haifan XIANG

期刊论文

CROP DIVERSITY AND SUSTAINABLE AGRICULTURE: MECHANISMS, DESIGNS AND APPLICATIONS

期刊论文

Towards the sustainable intensification of agriculture—a systems approach to policy formulation

Leslie G. FIRBANK

期刊论文

Reconfigurable manufacturing systems: Principles, design, and future trends

Yoram KOREN, Xi GU, Weihong GUO

期刊论文

INTERCROPPING: FEED MORE PEOPLE AND BUILD MORE SUSTAINABLE AGROECOSYSTEMS

期刊论文

WHEAT STRIPE RUST AND INTEGRATION OF SUSTAINABLE CONTROL STRATEGIES IN CHINA

期刊论文

Imprinted membranes for sustainable separation processes

Laura Donato, Enrico Drioli

期刊论文

Application of blockchain in the field of intelligent manufacturing: Theoretical basis, realistic plights

Qiang ZHANG, Baoyu LIAO, Shanlin YANG

期刊论文

中国制造业发展的成就、经验与问题研究

李平,李晓华

期刊论文

Nudging sustainable consumption of residential energy use: A behavioral economics perspective

期刊论文

Special Topic on environment and sustainable development

期刊论文